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Statistical mechanics of vortex lines

V. Berdichevsky
Mechanical Engineering, Wayne State University, Detroit, Michigan 48202
~Received 1 August 1996; revised manuscript received 24 February 1997!

Statistical mechanics of three-dimensional flows of an ideal incompressible fluid is considered. An ideal
fluid differs from the usual Hamiltonian systems of statistical mechanics by possessing an infinite number of
integrals of motion that are circulations of velocity over closed fluid contours. To reduce the problem to a
standard one, the governing equations should be written in a Hamiltonian form in which all integrals of motion
other than energy are eliminated. This is achieved by a generalization of the variational principle, which solves
this problem in a two-dimensional case. The formulated variational principle can be interpreted as a variational
principle for the dynamics of vortex lines. An invariant measure in the space of vortex lines is derived. For
effectively two-dimensional flows this measure is reduced to the invariant measure obtained previously. As an
example of application to effectively three-dimensional flows, the equation for averaged stream function for
turbulent flow in pipes is derived.@S1063-651X~98!03803-3#

PACS number~s!: 05.20.Dd
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I. INTRODUCTION

Turbulent motion of fluids remains a unique mechani
phenomenon that is still not understood from the first pr
ciples. A conceptual basis for turbulent theory has been
down recently by the general theory of dynamical syste
From the perspective of the theory of dynamical systems
develop a theory of turbulence means to find the probabili
measure of the attractor of Navier-Stokes equations.
term ‘‘probabilistic measure’’ means the same as that in
tistical mechanics: the probability of the event is the fract
of time during which this event is observed. The complex
of geometrical structure of attractors does not leave m
hope for any possibility of theoretical prediction if the attra
tor is low dimensional. However, high dimensionality
fluid flows may result in developing an invariant measu
that admits a simple theoretical description. In order to fi
this measure, it is natural to try to explore the presence
small parameter, viscosity~or inverse Reynolds number!.
Neglecting viscosity, one obtains the ideal fluid flow, whi
is a Hamiltonian system. Then, assuming ergodicity, the
tistical properties of the flow can be found. Viscosity shou
deform these properties. It can be taken into accounta pos-
teriori, by imposing on the ideal fluid flow some constrain
like smoothness, short wave cutoff, boundary constrai
etc. It might happen that this approach leads nowhere, an
modification of the ergodic Hamiltonian measure can
proach the measure of the attractor. Such a conclusion, h
ever, cannot be made before this course is followed, and
ergodic Hamiltonian measures are found and checked ag
experimental data. In any case, determination of the erg
measure of an ideal fluid is an interesting task in its o
right. A certain amount of progress has been made, in s
respects only partially, for the case of two-dimensional flo
in closed domains~see Refs.@1–9# and references therein!. It
is not a very interesting case in terms of applications, but
the simplest one. In this paper, a probabilistic measure
three-dimensional flow is proposed.

The concepts of statistical mechanics cannot be app
directly to fluid motion because fluid possesses an infin
571063-651X/98/57~3!/2885~21!/$15.00
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number of degrees of freedom, and it is not clear w
should be an analogy of such notions as ergodicity, ph
volume, etc. A natural approach would be to truncate
Euler equations and obtain a finite-dimensional system, m
desirably a Hamiltonian one. Then, assuming ergodicity
the finite-dimensional system, one can find its thermo
namical and probabilistic characteristics and consider
limit N→`. We will use this approach.

There is an important decision to make at the very beg
ning of the study: Truncations eliminate some properties
the Euler equations, and different truncations eliminate d
ferent properties. These differences may persist in the li
N→` and yield different limit results. We have to decid
which properties can be sacrificed without detriment to
proximation of the attractor measure. The degree of und
standing of fluid dynamics that is necessary for such a d
sion, does not exist at present. In addition, the situation
considerably complicated by the existence of an infin
number of integrals of motion, besides the energy. They
circulations of velocity over closed fluid contours. I
infinite-dimensional phase space motion occurs on the c
section of the energy surface by an infinite number of s
faces, which are the images of all other integrals. The cr
sections are some infinite-dimensional sheets on the en
surface. A truncation made without necessary precauti
violates the extra integrals of motion. It is not clear ho
important it is to respect the extra integrals of motion sin
viscosity destroys these integrals. If the extra integrals
changing on time scales that are much larger than the c
acteristic time of mixing, then these integrals cannot be
glected. We consider the truncations in which all extra in
grals of fluid motion are taken into account automatical
One of the key points in the consideration is a note that
dynamics of an ideal incompressible fluid can be split in
two parts: the dynamics of the vortex lines and the dynam
of the fluid particles on the vortex lines. The vortex line is
curve in three-dimensional space the tangent vector of wh
is proportional to the vorticity vector at each point. Th
choice of parameter on the curve is not important: the cur
with different parametrizations are identified. It turns out th
2885 © 1998 The American Physical Society
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2886 57V. BERDICHEVSKY
the motion of the fluid particles along the vortex lines do
not affect the dynamics of the vortex lines. Therefore,
dynamics of the vortex lines can be considered indep
dently and has an intrinsic meaning. The dynamics of fl
particles on the vortex lines is determined uniquely by
motion of the vortex lines from the incompressibility cond
tion.

The dynamics of the vortex lines possesses a remark
feature: it is Hamiltonian. The corresponding variation
principle is offered in this paper. This is a generalization
the variational principle of Ref.@9# for two-dimensional
flows. The variational principle presents the equations
fluid dynamics in the form where the extra integrals, circ
lation of velocity over fluid contours, are eliminated.

For two-dimensional flows the statistical independence
positions of point vortices yields the so-called mean-fi
theory. Accepting that, for three-dimensional flows, positio
of vortex lines are statistically independent, we obtain
following probability measure: probabilityP of a vortex loop
carrying the vorticityv̊ to be within a small tube surround
ing contourg is

P5const3e2bv̊*gc̄ i dxi
. ~1.1!

Here c̄ i are the components of the average stream func
vector ~Latin indices run values 1,2,3, summation over
peated indices is implied!, and b plays the role of inverse
temperature. Formula~1.1! indicates that the motion of vari
ous pieces of the vortex line is also ‘‘almost’’ statistical
independent: if contourg is composed of two contoursg1
andg2 , the corresponding probabilities are multiplied.

It is shown~Sec. XI! that the probabilistic measure~1.1!
yields the probabilistic measure for two-dimensional flow
the probability density function for positionsr of the particle
carrying vorticity v̊ is

f ~r !5const3e2bv̊c̄~x!, ~1.2!

where c̄ is the averaged stream function of the tw
dimensional flow. This fact may be considered as a par
explanation of why two-dimensional theory of point vortic
predicts@10# turbulent velocity profiles in Couette and Po
seuille flows in spite of the essential three dimensionality
these flows.

Measure~1.1! is used to obtain the equation for the ave
aged stream function of pipe flow. Previously, the statisti
mechanics of vortex lines has been considered by Chori
a series of papers@11–15# and monograph@8#. Chorin as-
sumed the Gibbs measure,

P5const3e2bH, ~1.3!

whereH is the energy of the vortex line,

H5 1
2 g2

« «

dhdh8

ux~h!2x~h8!u
~1.4!

~the signW means that some regularization is done to elim
nate the divergence of the integral!. Measure~1.3!,~1.4! was
used to obtain the energy spectrum in the inertial range.

Measures~1.1! and ~1.3!,~1.4! are different. Measure
~1.3!,~1.4! describes the statistics of a single vortex line
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unbounded space if the major contribution to the energy
the flow is the energy of the vortex line under considerati
Measure~1.1!, as will be seen from the derivation, represen
another physical situation. It describes the statistics of
vortex lines when contribution of any single vortex line
energy is assumed to be negligible in comparison with
energy of the whole ensemble: the intensity of each vor
line tends to zero when the number of vortex lines tends
infinity and only the energy of the ensembles matters.

Other issues addressed in this paper are an explanatio
why statistical theory based on dynamics of ideal fluid m
describe the turbulent flows of viscous fluids in wa
bounded domains~Appendix C! and the determination o
symmetries of the action functional and the correspond
integrals of motion of the vortex line dynamics~Appendix
B!.

The paper is organized as follows. In the next section
basic equations of an ideal fluid flow are recalled. Then
variational principle for two-dimensional flows is formu
lated. The expression for the kinetic energy of thre
dimensional~3D! flows is derived in Sec. IV. The variationa
principle for vortex lines is formulated and discussed in S
V. In Sec. VI, it is shown how to find the motion of th
particles on the vortex lines if the motion of the vortex lin
is known. In Sec. VII, the probability measure for two
dimensional flows derived in Ref.@9# from the ergodic hy-
pothesis is obtained by means of the principle of maxim
entropy. The approach of Sec. VI is generalized to thr
dimensional flows in Sec. VIII. After derivation of som
auxiliary relations in Sec. IX, the two-dimensional measu
~1.2! is obtained from~1.1! in Sec. X. The averaged equatio
for the stream function of pipe flow is developed in Sec. X
This is followed by Appendix A, containing the derivation o
the action functional variation, and the above-mentioned A
pendixes B and C.

Some of these issues will be discussed also in@16#.

II. EQUATIONS OF FLUID DYNAMICS

There are many different forms of the system of equatio
governing the dynamics of an ideal incompressible flu
flow. In Cartesian Eulerian coordinates,xi ( i 51,2,3), an
inertial observer’s frame, the system consists of momen
equations~the Euler equations!,

rS ]v i~ t,x!

]t
1v j

]v i

]xj D52
]p

]xi , ~2.1!

and the incompressibility condition,

]v i

]xi 50. ~2.2!

Herev i andp are velocity components and pressure, cor
spondingly, and the mass density of fluid,r, is assumed to be
a constant.

Equations~2.1! and~2.2! form a set of four equations fo
four unknown functionsv i andp.

Equations~2.1! and ~2.2! admit a continuum set of inte
grals. To find these integrals it is convenient to rewrite E
~2.1! and ~2.2! in terms of Lagrangian coordinatesja, (a
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57 2887STATISTICAL MECHANICS OF VORTEX LINES
51,2,3). In Lagrangian coordinates, the key required fu
tions are the particle trajectories,

xi5xi~ t,ja!,

while the velocity componentsv i , by definition, are

v i5
]xi~ t,ja!

]t
. ~2.3!

We use a convention, that, for any functionw, derivative
]w(t,j)/]t means the time derivative for fixed Lagrangia
coordinates while]w(t,x)/]t means the time derivative fo
fixed Eulerian coordinates. The sets of coordinatesxi andja

are denoted byx and j, correspondingly, if it cannot creat
misinterpretation.

If the velocity were known as a function of Eulerian c
ordinates and time then Eq.~2.3! becomes a system of ord
nary differential equations to find particle trajectories:

]xi~ t,j!

]t
5v j

„t,xj~ t,j!…. ~2.4!

Equations of fluid dynamics can be written as equatio
for functionsxi(t,j) andp(t,j). Indeed, since

]v i~ t,x!

]t
1v j

]v i

]xj [
]2xi~ t,j!

]t2 ,

the Euler Eqs.~2.1! can be written as

r
]2xi~ t,j!

]t2 52
]p~ t,j!

]ja

]ja

]xi . ~2.5!

Here one should understand under]ja/]xi the components
of the matrix that is inverse to the matrixi]xi /]jai . For
given p, Eqs.~2.5! form a system equations of second ord
for x(t,j).

The incompressibility condition can be formulated
terms of functionsx(t,j) as the conservation of the determ
nant of matrixi]x/]ji at each particle,

detI ]x

]j I5Ag̊~j!, ~2.6!

where g̊(j) is the determinant of the metric tensor in L
grangian coordinates. The equivalence of Eqs.~2.2! and~2.6!
can be derived from the identity

]

]tU
j5const

detI ]x

]j I5detI ]x

]j I ]v i

]xi .

Equations~2.5! and~2.6! form a system of four equation
for four required functions,xi(t,j) andp(t,j).

Another remarkable form of the Euler equations~2.5! is
obtained if these equations are written for the covariant co
ponents of velocity in Lagrangian coordinates,

va5
]xi

]ja

]xi

]t
. ~2.7!
-

s

r

-

Contracting Eq.~2.5! with ]xi /]ja and differentiating by
parts we obtain

r
]va~ t,j!

]t
52

]

]ja ~p2 1
2 rv2!. ~2.8!

Here the squared absolute value of velocity is denoted byv2,

v25
]xi~ t,j!

]t

]xi~ t,j!

]t
.

The system of equations admits the reduction of the ord
Indeed, let us define the functionw(t,j) by the equation

r
]w~ t,j!

]t
52p1 1

2 rv2. ~2.9!

For a given motionx(t,j) this equation establishes the on
to-one correspondence betweenp andw if initial data for w
are provided. Let for definitenessw be zero initially. Then,
from Eqs.~2.8! and ~2.9!,

va~ t,j!5 v̊a~j!1
]w~ t,j!

]ja , ~2.10!

where v̊a(j) are the initial values of velocity. From Eqs
~2.7! and ~2.10! we obtain the equations forx(t,j),

]xi

]ja

]xi~ t,j!

]t
5 v̊a~j!1

]w~ t,j!

]ja , ~2.11!

where functionw should be chosen in such a way that t
incompressibility condition~2.6! holds.

After the system of Eqs.~2.11! and ~2.6! is solved, pres-
sure can be found from Eq.~2.9!.

The time-dependent potential part of velocity~2.10! can
be eliminated by differentiation of Eq.~2.10! with respect to
b and alternatinga andb. We have

]

]t
v @a,b#~ t,j!50, ~2.12!

where

v @a,b#[
1

2 S ]va

]jb2
]vb

]jaD .

Antisymmetric tensorv @a,b# is in one-to-one correspondenc
with the vector,

vc[
1

Ag̊
eabcv @a,b# , v @a,b#5

1

Ag̊
eabcv

c ~2.13!

Here eabc5eabc , are the components of the Levi-Civit
symbol.

The vector with contravariant componentsva is called the
vorticity vector. In accordance with Eq.~2.12!, at each fluid
particle,va(j) do not depend on time and are equal to th
initial values, which are denoted byv̊a(j).

In Eulerian coordinates the vorticity vector has the co
ponents
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2888 57V. BERDICHEVSKY
v i5ei jk
]v j

]xk ~2.14!

and, due to the law of transformation of vector compone

v i5
]xi

]ja v̊a. ~2.15!

Inversely,

v̊a5
]ja

]xi v i . ~2.16!

Note that the covariant components of vorticity,

va5
]xi

]ja v i ,

in general, are time dependent.
Conservation of vorticity is often formulated in anoth

form: for any closed fluid contourG circulation of velocity
v i , *Gv idxi , does not depend on time. This statement
equivalent to conservation ofva.

A form of Eq. ~2.15! that does not refer to Lagrangia
coordinates can be obtained by differentiation~2.15! with
respect to time for fixed Lagrangian coordinates:

]v i~ t,j!

]t
5

]v i~ t,x!

]t
1vk

]v i

]xk 5
]v i

]ja va.

Eliminatingva in the last relation by means of Eq.~2.16!
we have

]v i~ t,x!

]t
1vk

]v i

]xk 5
]v i

]xk vk. ~2.17!

This equation can also be obtained by applying the Rot
erator to the Euler equations~2.1!. As follows from the deri-
vation, this equation is equivalent to conservation of the c
travariant components of vorticity in Lagrangian coordinat
va.

A certain difficulty in solution of the Euler equations i
the form~2.11! relates to necessity to satisfy the incompre
ibility condition. Fortunately, there is a way to get arou
this difficulty. The point is that any incompressible veloci
field is completely determined by the vorticity field, an
there is the integral relation,

v i~ t,x!5E
V
Rj

i ~x,x8!v j~ t,x8!d3x8. ~2.18!

The kernelRj
i (x,x8), depends on the geometry of regionV.

This relation is discussed in more detail in Sec. IV. Fro
Eqs. ~2.18!, ~2.15!, and ~2.6! one obtains a system of inte
grodifferential equations for fluid particle trajectories

]xi~ t,j!

]t
5E

V
Rj

i
„x~ t,j!,x~ t,j8!…

]xj~ t,j8!

]j8a v̊a~j8!d3j8.

~2.19!

In this form, the incompressibility and the conservation
vorticity become the built-in properties of the right-hand si
s,

s

-

-
,

-

f

of the equation. Unfortunately, there is an unpleasant fea
of Eqs.~2.19!: in contrast to the Euler equations~2.1!, they
are not Hamiltonian. It turns out, however, that this syst
can be split into two parts: one subsystem is closed
Hamiltonian and describes the dynamics of the vortex lin
while another one determines the motion of particles on
vortex lines by a known solution of the first subsystem. W
consider first the 2D case when the motion of particles alo
the vortex lines is absent, and the system~2.19! is Hamil-
tonian.

III. 2D MOTION

A. Equations of 2D motion of an ideal incompressible fluid

For 2D motion one of the Eulerian coordinates, say,x3, is
identically equal toj3, while two others,xa,(a51,2), are
functions oft andjm(m51,2) only:

xa5xa~ t,jm!, x3[j3. ~3.1!

Here and in what follows Greek indices run values 1,2. F
2D motion v3[0 while va components obey the incom
pressibility condition,

]va

]xa 50.

The latter means that a functionc(t,x) exists such that

va5eab
]c~ t,x!

]xb .

Hereeab are the components of the 2D Levi-Chivita symbo
e115e2250, e1252e2151.

The vorticity vector has the only nonzero compone
v3[v(t,x), and

2Dc5v. ~3.2!

At the boundary the ‘‘no-penetration-detachment’’ conditi
is accepted,vana50. Assuming also, for simplicity, that re
gion V is simply connected, we have without loss of gen
ality

cu]V50. ~3.3!

Equations~3.2! and ~3.3! have the solution

c~ t,x!5E
V
G~x,x8!v~ t,x8!d2x8, ~3.4!

where G(r ,r 8) is the Green’s function of regionV deter-
mined by the boundary-value problem~D r is the Laplace
operator inr variables!:

D rG~r ,r 8!52d~r 2r 8! in V, G~r ,r 8!50 if r P]V.
~3.5!

The components of velocity are

v1~ t,x!5
]

]x2
E

V
G~x,x8!v~ t,x8!d2x8, ~3.6!
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57 2889STATISTICAL MECHANICS OF VORTEX LINES
v2~ t,x!52
]

]x1
E

V
G~x,x8!v~ t,x8!d2x8.

Equations~3.6! form a 2D version of the general equatio
~2.18!.

In accordance with Eqs.~3.1! and ~2.16! conservation of
vorticity means that

v„t,xa~ t,jm!…5v̊~jm! ~3.7!

or

v~ t,xa!5v̊„jm~ t,xa!…. ~3.8!

Hence, Eqs.~2.19! in the 2D case take the form

dx~ t,j!

dt
5E

V

]G„r ,r ~ t,j8!…

]y U
r 5r ~ t,j!

v̊~j8!d2j8,

dy~ t,j!

dt
52E

V

]G„r ,r ~ t,j8!…

]x U
r 5r ~ t,j!

v̊~j8!d2j8.

~3.9!

Herex1[x, x2[y, and couple (x,y) is denoted byr .
Equations~3.9! determine the dynamics of an ideal in

compressible fluid in a bounded simply connected dom
The flow is specified by the prescribed initial vorticity. Th
incompressibility condition and conservation of vortici
have been used in construction of Eq.~3.9! and form the
properties that can be easily respected in truncations. It t
out that dynamical equations are Hamiltonian and foll
from the variational principle to which we proceed.

B. Variational principle

Consider the following functional of the position vect
r (t,j):

I ~r !5E
t0

t1
dtF E

V
v̊~j!y~ t,j!

dx~ t,j!

dt
d2j2KG ,

~3.10!

K5
1

2 E
V
E

V
G„r ~ t,j!,r ~ t,j8!…v̊~j!v̊~j8!d2jd2j8.

~3.11!

Hered2j[dj1dj2.
It can be checked by inspection that the stationary po

of functional ~3.10! are solutions of the equations of flui
dynamics~3.9!. To eliminate extra terms in variation of th
functional ~3.10! appeared att5t0 ,t1 after integration by
parts, one can assume that thex coordinates of all particles
are prescribed att5t0 ,t1 .

Some features of this variational principle are worth n
ing. First, the first term in Eq.~3.10! has the form of standard
‘‘shortened’’ action functional in classical mechani
*pq̇ dt if x andy coordinates of particles are identified wi
generalized coordinate and momentum while summa
over degrees of freedom corresponds to summation o
fluid particles with the measurev̊(j)d2j. The second term
in Eq. ~3.10! is the Hamiltonian of the system, which is th
n.

ns

ts

-

n
er

total kinetic energy of the fluid. This justifies the term ‘‘ac
tion functional’’ for the functional~3.10!. Second, in dy-
namical equations in the form~3.9! the integrals of fluid
motion additional to energy are eliminated~see Appendix B
for more detail!. Third, the number of degrees of freedom
decreased significantly: only particles carrying nonzero v
ticity are taken into consideration. Particles with zero vort
ity influence the dynamics through the Green’s functio
which is determined completely by geometry of the regi
V. Fourth, in contrast to the usual Hamiltonian variation
principle in fluid dynamics,~see, for example,@17#! the ad-
missible functionsr (t,j) are arbitrary and should not satisf
the incompressibility condition, deti]r/]ji51: each station-
ary point of the functional~3.10! obeys this condition auto
matically.

C. Point vortex truncation

Action functional~3.10! determines a Hamiltonian system
of an infinite number of particles.

A natural finite-dimensional truncation of the continuu
would be to keep only a finite numberN of particles,
j1 ,...,jN . Then motion of continuum is characterized byN
functionsr 1(t)[r (t,j1),...,r N(t)5r (t,jN).

From now on we have to use indices of three vario
natures: indices corresponding to the projections on Eule
and Lagrangian coordinates, and indices numbering the
lected particles~point vortices! or vortex lines. In 3D for
these purposes we use three groups of Latin indic
( i , j ,k,m,n), (a,b,c), and (p,q,s,t) correspondingly; in 2D,
Eulerian and Lagrangian indices are denoted by Greek le
~a,b,g! and ~m,n,l!, respectively.

Approximatingv̊(j) by d functions:

v̊~j!5(
s51

N

gsd~j2js!, ~3.12!

one obtains the action functional of the point vortex appro
mation,

I ~r i !5E
t0

t1F(
s

gsysẋs2H~r !Gdt, ~3.13!

H~r !5
1

2 (
s,t

G~r s ,r t!gsg t . ~3.14!

In the expression forG(r s ,r s) the leading~infinite! term
can be dropped since it is independent of motion. Then
functional ~3.13! is the action functional in the theory o
point vortices.

IV. KINETIC ENERGY
OF THREE-DIMENSIONAL FLOWS

In order to extend the variational principle discussed
three-dimensional flows, one has to obtain, first of all, t
expression for kinetic energy similar to Eq.~3.11!. Let us
show that the total kinetic energyK can be presented in th
form



d

e
ty

ec

n
r

n-

on

s.
id
n

on
w

on

oc-

lds

2890 57V. BERDICHEVSKY
K5
1

2 E
V
E

V
Gi j ~x,x8!v i~ t,x!v j~ t,x8!d3xd3x8, ~4.1!

whereGi j (x,x8) is some two-point tensor field determine
by the geometry of the container only.

Consider the well-known kinematical problem: find th
velocity field generated by a given vorticity. The vortici
field obeys the constraint

]v i~x!

]xi 50. ~4.2!

For any vorticity field satisfying Eq.~4.2! the velocity
field v i(x) is determined from the system of equations

ei jk
]vk~x!

]xj 5v i~x!,
]v i

]xi 50, v ini50 at ]V.

~4.3!

Hereni are the components of the unit outward normal v
tor at]V. It is easy to see that the problem~4.3! has a unique
solution. This solution can be written in the form

v i~x!5E
V
Rj

i ~x,x8!v j~x8!d3x8. ~4.4!

The kernelRj
i (x,x8) is not unique due to the conditio

~4.2!: one can change Rj
i by adding the tenso

]Ri(x,x8)/]x8 j , whereRi(x,x8) is an arbitrary vector field
vanishing ifx8P]V.

Let us introduce the stream function vectorc i(x) by the
system of equations similar to Eq.~4.3!:

ei jk
]ck~x!

]xj 5v i~x!,
]c i~x!

]xi 50, c ini50 at ]V.

~4.5!

The stream function vector determined by Eq.~4.5! is
unique. Similarly to Eq.~4.4! one can write

c i~x!5E
V
Rj

i ~x,x8!v i~x8!d3x8. ~4.6!

The difference between the problems~4.3! and ~4.5! is
that velocity field is constrained by the ‘‘no-penetratio
detachment’’ condition

v ini50 at ]V. ~4.7!

To make kinematical problems~4.3! and~4.5! completely
identical, we assume that vorticity satisfies the similar c
dition

v ini50 at ]V. ~4.8!

This condition helps to simplify some further relation
Physically, this condition is sensible: since the ideal flu
flow is considered as an approximation of viscous flow, a
for viscous flows with no-slip boundary conditions equati
~4.8! holds, it is natural to accept that an ideal fluid flo
inherits the boundary condition~4.8!.
-

-

d

To write down Eq.~4.8! in terms of velocity we introduce
surface curvilinear coordinatesza on ]V and denote projec-
tions on these coordinates by Greek indices; they run
values 1,2. In accordance with the first equation~4.3!, Eq.
~4.8! takes the form

eab
]va

]zb 50. ~4.9!

Equation~4.9! means that the tangent components of vel
ity are some potential functions at]V,

va5
]x

]za , ~4.10!

wherex is an arbitrary function of surface coordinates.
As soon as we constrained the admissible vorticity fie

by the boundary condition~4.8!, the kernelRi j (x,x8) gets
the property

E
V
E

V
@Ri j ~x,x8!2Rji ~x8,x!#v

1

i~x!v
2

j~x8!d3xd3x850

~4.11!

for any two divergence-free vector fieldsv
1

i andv
2

i .

To prove Eq.~4.11!, denote byv
1

i and v
2

i the velocity

fields determined byv
1

i andv
2

i from Eq. ~4.3!, and consider

the integral

B5E
V
v
2

iv
1

id3x5E
V
E

V
Ri j ~x,x8!v

2

j~x8!v
1

i~x!d3x8d3x.

~4.12!

Integrating by parts we have

B5E
V
v
2

ie
i jk

]v
1

k

]xj d3x5E
]V

v
2

ie
i jknjv

1
kd

2x

2E
V
v
1

ke
i jk

]v
2

i

]xj d3x.

Since, in accordance with Eq.~4.10!,

E
]V

v
2

ie
i jknjv

1
kd

2x52E v
2

aeabv
1

bd2z

52E ]

]za S x2eab
]x1

]zb Dd2z50,

we obtain

B5E
V
v
1

iv
2

id3x5E
V
E

V
Ri j ~x,x8!v

1

j~x8!v
2

i~x!d3xd3x8.

~4.13!

Equation~4.11! follows from Eqs.~4.12! and ~4.13!.
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Composition of formulas~4.4! and~4.6! yields the expres-
sion of stream function vectorc i in terms of vorticity,

c i~x!5E
V
Gi j ~x,x8!v j~x8!d3x8, ~4.14!

where

Gi j ~x,x8!5E
V
Rik~x,x̃!Rj

k~ x̃,x8!d3x̃. ~4.15!

Let us show that tensorGi j is the kernel in the expressio
for kinetic energy~4.1!. We have

2K5E
V
v iv

id3x5E
V
v ie

i jk
]ck

]xj d3x5E
]V

v ie
i jknjckd

2z

2E
V

]v i

]xj
ei jkckd

3x52E
]V

vaeabcbd2z

1E
V
c iv

id3x. ~4.16!

In accordance with Eqs.~4.7! and ~4.8!, va and ca are
some potential vectors at]V, and the first integral in Eq
~4.16! vanishes. Thus

K5
1

2 E
V
c iv

id3x ~4.17!

and Eq.~4.1! follows from Eqs.~4.14! and ~4.17!.
Note that an additional contribution in Eq.~4.17! appears

if vn[v iniÞ0 at ]V. If x is the surface potential forcb
5x ,b ~recall that the conditionv ini50 is accepted!, then
this contribution is

E
]V

xvnd2x.

It vanishes forvn50.
In general, tensorGi j (x,x8) is not symmetric. One can

introduce symmetric tensorG̃i j (x,x8) by the relation

G̃i j ~x,x8!5E
V
Rmi~ x̃,x!Rmj~ x̃,x8!d3x̃. ~4.18!

The kinetic energy can be written in terms ofG̃i j (x,x8):

K5
1

2 E
V
v iv

id3x5
1

2 E
V
E

V
G̃i j ~x,x8!v i~x!v j~x8!d3xd3x8.

~4.19!

Expressions~4.19! and ~4.1! coincide due to identity
~4.11! ~this identity should be applied to the vectors

v
1

i5v i and v
2

i5E Rj
i ~x,x8!v j~x8!d3x8,

which are both divergence free!.
V. VARIATIONAL PRINCIPLE FOR VORTEX LINES

A. Vortex lines

The vorticity vector field determines a family of vorte
lines. Since vorticity componentsv̊a are constant in La-
grangian coordinates, it is worthwhile to consider the flu
lines, ja5ja(s), for which the tangent vectordja/ds is
proportional tov̊a. The Lagrangian coordinate system wi
one of coordinate lines, say,j3, directed along the vortex
lines plays a distinct role. We shall call it the vortex lin
coordinate system. In this coordinate system only one c
travariant component of vorticity,v̊3, is not zero. In fact, the
existence of the vortex line coordinate system is an assu
tion that puts some constraints on the initial vorticity fiel
This assumption, however, does not seem physically rest
ing.

In accordance with Eq.~2.13!, the vorticity vector is di-
vergence free:

]

]jc Ag̊v̊c50. ~5.1!

Therefore the quantityv̊5Ag̊v̊3 does not depend onj3.
Functionv̊(j1,j2) plays the role of the intensity of the vor
tex lines and is similar to functionv̊ of two-dimensional
flows. The only difference is that for two-dimensional flo
the coordinatesj1,j2 can always be chosen to be Cartesi
while for three-dimensional flows Lagrangian coordina
are, in general, curvilinear.

In the vortex line coordinates, a parameter along the v
tex lines is denoted byh. The formula for vortex intensity,
v̊5Ag̊v̊3, has the same form for all choices of the para
eter h: for any other parameterh85h8(h,j1,j2), the third
vorticity component gets the factor]h/]h8, v̊38

5v̊3]h8/]h, while the determinant of the metric tensor ge
the factor (]h8/]h)2, g̊85g̊(]h/]h8)2; these factors are
canceled in the expression forv̊:v̊5v̊83Ag̊85v̊3Ag̊.

In the following, we denote byj a couple (j1,j2), so that
j is a mark of the vortex line, while the whole set of La
grangian coordinates (j1,j2,j3) is denoted byj.

B. Kinetic energy as a functional of positions of vortex lines

We presented kinetic energy as a bilinear form of t
vorticity vector in Eulerian coordinates. In fact, we need it
Lagrangian coordinates. To perform the transformation,
note byr (t,j) the position of fluid particlej at instantt. The
integrals over Eulerian coordinates can be transformed to
integrals over Lagrangian coordinates by means of the
lowing relation: for any function,w(t,x),

E
V
w~ t,x!d3x5E

V
w„t,r ~ t,j!…U]x

]j
Ud3j,

or, taking into account the incompressibility condition~2.6!,

E
V
w~ t,x!d3x5E

V
w„t,r ~ t,j!…Ag̊d3j. ~5.2!

From Eqs.~4.1!, ~5.2!, and ~2.15! we obtain the kinetic en-
ergy as a functional of position vector,
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K5
1

2 E
V
E

V
Gi j „r ~ t,j!,r ~ t,j8!…

]r i~ t,j!

]ja

3v̊a~j!
]r j~ t,j8!

]jb v̊b~j8!Ag̊~j!d3jAg̊~j8!d3j8.

~5.3!

In the vortex line coordinate system the expression~5.3!
takes the form

K5
1

2 E
V
E

V
G„g~ t,j!,g~ t,j8!…v̊~j!v̊~j8!d2jd2j8,

~5.4!

whereg(t,j) is the position of the vortex linej at the instant
t: xk5r k(t,h,j), andG(g,g8) is the functional of vortex
line positionsg andg8,

G~g,g8!

[E E Gi j „r
k~h!,r 8k~h8!…

]r i~h!

]h

]r 8 i~h8!

]h8
dhdh8.

~5.5!

In Eq. ~5.5! r k(h) and r 8k(h8) are the curvesg andg8; in
Eq. ~5.4! d2j[dj1dj2.

Formula ~5.4! is an exact 3D analogue of the 2D E
~3.11!: if the vortex lineg(t,j) is determined by one point in
the plane,r (t,j), andG(g,g8) is replaced by Green’s func
tion G(r ,r 8), Eq. ~5.4! is transformed to Eq.~3.11!.

The expressions~5.4! and ~5.5! show that kinetic energy
is invariant with respect to the motion of fluid particles alo
the vortex lines. Therefore, any variational principle th
uses the expressions~5.4! and~5.5! for kinetic energy canno
determine the dynamics of fluid particles on the vortex lin
In the classical Hamilton variational principle the kinetic e
ergy does not have such a symmetry, and the motion of fl
particles is determined uniquely. The action functional of
Hamilton variational principle possesses, however, ano
rich group of symmetry, the relabeling group. This gro
generates conservation of vorticity circulations. Writing t
energy expression in the form~5.4!,~5.5! we eliminated the
relabeling group and the corresponding integrals.

C. Variational principle for vortex lines

Consider the following functional of particle position
r (t,j):

I 5E
t0

t1
@A2K#dt,

A[E
V

1

3
ei jkr i~ t,j!

]r j~ t,j!

]t

]r k~ t,j!

]ja v̊a~j!d3j,

~5.6!

whereK is the functional~5.4!. We are going to show tha
stationary points of this functional correspond to the mot
of an ideal incompressible fluid.

Variation of the functional~5.6! is ~see Appendix A!
t

.

id
e
er

n

dI 5E
t0

t1E
V
ei jkdr i

„ṙ j2Vj~r !…vkd3dt, ~5.7!

where velocityVj is determined as a functional of positio
vector:

Vj~r !5ejlmE
V

]Rlk„r ,r ~ t,j8!…

]r m U
r 5r ~ t,j!

3
]r k~ t,j8!

]j8a v̊a~j8!d3j8. ~5.8!

Sincedr i are arbitrary, the Euler equations of the variation
problem are

ei jk S ]r j~ t,j!

]t
2Vj~r ! Dvk50, ~5.9!

wherevk should be expressed in terms of position vector
Eq. ~2.15! @18#. Symmetry of the action functional with re
spect to the particle motion along the vortex lines causes
Euler equations~5.9! to be dependent: contraction of Eq
~5.9! with the vorticity vector yields identity.

Equation~5.9! can be rewritten also as

]r i~ t,j!

]t
5Vi~r !1l~ t,j!v i , ~5.10!

wherel is an arbitrary function oft andj.
It is clear that the choice ofl determines the particle

velocity along the vortex lines and does not affect the mot
of the vortex lines themselves. Projection of the velocity
the directions that are normal to the vortex lines coincid
with that for ideal fluid flow. Thus, the dynamics of th
vortex lines is determined correctly by the variational pr
ciple formulated.

The uncertainty of positions of particles on the vort
lines suggests the interpretation of the variational princi
for functional~5.6! as a variational principle for the dynam
ics of vortex lines.

The variational principle has the same advantages as
mentioned with regard to the variational principle for fun
tional ~3.10!.

Note that functional~5.6! cannot be reduced to the func
tional ~3.10! for two-dimensional motion: it is enough t
notice the factor 1/3 in the expression forA @Eq. ~5.6!#. The
reason is that the conditionv ini50 at ]V was used: this
condition is violated for two-dimensional flows. Neverth
less, conceptually functional~5.6! may be viewed as a three
dimensional analogue of the functional~3.10!.

The variational principle suggests a natural way to tru
cate fluid dynamics equations. First, the continuum set
vortex lines is replaced by a finite set of vortex line
j1 ,...,jN . That is similar to the point vortex truncation. Se
ond, the dynamics of each vortex line is sought within
m-parameter family of closed 3D curves,

xi5r i~s,a1,...,am!. ~5.11!

Heres is the arc length along the curve, and the parame
a1,...,am specify the member of the family. The dependen
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57 2893STATISTICAL MECHANICS OF VORTEX LINES
a15a1(t),...,am5am(t) determines the dynamics of th
line. The functions ~5.11! may depend also onj: x
5r (s,a,j).

So, the dynamics of fluid is described by a finite set
generalized coordinatesa5(aA

i ), i 51,...,m, A51,...,N; the
parametersaA

i with index A correspond to theAth vortex
line. Plugging the admissible functions~5.11! into the action
functional ~5.6! and integrating overj ands, one obtains

A5(
i ,A

Pi
A~a!ȧA

i , K5K~a!, ~5.12!

where

Pi
A5gAE 1

3
em jkr

m~s,a,jA!
]r j~s,a,jA!

]aA
i

]r j~s,a,jA!

]s
ds

and gA is the intensity of the Ath vortex line, gA
5v̊(jA)D, andD is the 2D blob size~or area of the vortex
tube cross section!. So, the truncated system is Hamiltonia
and has the Lagrange function,

L5(
i ,A

Pi
A~a!ȧA

i 2K~a!. ~5.13!

Assuming that the motion is ergodic in thea variables
one can study the statistical properties of the system~5.13!.
We emphasize that one needs the ergodicity of the motio
vortex lines only: one may not expect ergodicity if the m
tion of the fluid particles along the vortex lines is taken in
account.~The latter depends on the value of the veloc
circulation over the vortex lines. If it is zero, as one m
assume for the Couette and Poiseuille flows, then the mo
of particles is not ergodic. For nonzero circulations it may
ergodic.!

Note that the Lagrange function of the point vortex d
namics also has the form~5.13!.

Denote temporarily all coordinatesa by x5(x1,...,xn),
n5mN. The Lagrange function has the form

L~x,ẋ!5(
i 51

n

Pi~x!ẋi2H~x!. ~5.14!

This Lagrange function does not have the standard form
Hamiltonian mechanics,

L5( piq̇
i2H~p,q!.

The standard form corresponds to evenn52m, and func-
tions Pi(x) of the form

P1~x!5xm11,..., Pm~x!5x2m,

Pm1150,..., P2m50.

In this case we identifyx1,...,xm with q1,...,qm and
xm11,...,x2m with p1,...,pm, respectively. In the genera
case, for evenn52m, the form( i 51

n Pi(x)dxi can be trans-
formed to ( i 51

m pi dqi by a coordinate transformation~at
least, locally!. However, to find such a transformation is n
an easy task, and we are obliged to consider the trunc
f

of

n
e

of

ed

dynamics of the vortex lines inx coordinates. Inx coordi-
nates, the basic relations of classical statistical mecha
should be slightly modified~see@16#!. Fortunately, the state
ments that follow will not be affected.

VI. MOTION OF PARTICLES ON VORTEX LINE

A remarkable property of vortex lines is that the dynam
of the vortex lines determines the dynamics of the fluid co
pletely. More precisely, let

xk5r k~ t,h,j! ~6.1!

be a parametric form of equations of vortex linej. If the
motion of all vortex lines is known then the motion of pa
ticles still has some arbitrariness due to possible mot
along the vortex lines. To describe the arbitrariness let
refer each vortex line at instantt to the arc lengths along the
vortex line at this instant,

xk5 r̊ k~ t,s,j!. ~6.2!

The functionsr̊ k(t,s,j) are determined by the positions o
the vortex lines. The length of the vortex linej,l (t,j), de-
pends, in general, ont, and the arc lengths in Eq. ~6.2!
changes within the limits

0<s< l ~ t,j!.

Any motion of particles along the vortex linej is de-
scribed by the function

s5s~ t,h,j!.

The functionsr k(t,h,j) relate to the positions of the vorte
lines r̊ k(t,s,j) by the equations

r k~ t,h,j!5 r̊ k
„t,s~ t,h,j!,j….

It turns out that motion along vortex lines,s(t,h,j), is de-
termined by the motion of vortex lines due to the incom
pressibility condition. To show that let us denote the det
minant of the matrix with the rows] r̊ k/]j1,] r̊ k/]j2,] r̊ k/]s
by

detI ] r̊

]j
,

] r̊

]sI .

The similar notation is used for the determinant of the ma
with the rows]r k/]j1,]r k/]j2,]r k/]h:

detI ]r

]j
,

]r

]h I .

Since

]r k

]j1 5
] r̊ k

]j1 1
] r̊ k

]s

]s

]j1 ,
]r k

]j2 5
] r̊ k

]j2 1
] r̊ k

]s

]s

]j2 ,

]r k

]h
5

] r̊ k

]s

]s

]h

we have
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detI ]r

]j
,

]r

]h I5
]s

]h
detI ] r̊

]j
,

] r̊

]sI .

Therefore, from the incompressibility condition, we obta
an equation for the functions(t,h,j):

]s

]h
5Ag̊Y detI ] r̊

]j
,

] r̊

]sI . ~6.3!

This equation determines the functions(t,h,j), and, thus,
the motion of fluid particles on the vortex lines.

VII. STATISTICAL MECHANICS OF POINT VORTICES

Proceeding to the statistical mechanics of ideal fluid flo
we start from the 2D case. The phase space of fluid motio
the space of mappingsx5r (j), jPV, xPV. Conservation
of energy extracts a surface in phase space:

H~r !5
1

2 E
V
E

V
G„r ~j!,r ~j8!…v̊~j!v̊~j8!d2jd2j85E

5const. ~7.1!

Dynamical equations of ideal fluid~3.9! possess also a con
tinuum set of integrals owing to the incompressibility con
tion: for eachj,

detI ]r

]j I51. ~7.2!

For point vortex approximation the energy integral~7.1!
should apparently be kept, while the incompressibility co
ditions ~7.2! do not seem to be putting constraints on t
vortex positions.

Ergodicity of point vortex motion yields@9# statistical in-
dependence of positions of any two-point vortices. In
continuum limit any two particles~carrying nonzero vortic-
ity! move independently: for the two-point probability de
sity function one can write

f ~r ,j;r 8,j8!5 f ~r ,j! f ~r 8,j8!. ~7.3!

Of course, property~7.3! is an idealization that can b
valid only in the limit on an infinite time of observation. Fo
very close particles and/or finite time of observation an
corporation of the correlations might be necessary. Howe
for such rough characteristics of turbulent motion as the
eraged velocity profile an approximation~7.3! may be ac-
ceptable; this is supported by the results of Ref.@10#.

The probability density function of positions of a partic
j carrying vorticity v̊(j) has been found to be@9#

f ~r ,j!5e2bv̊~j!c̄~r !Y E
V
e2bv̊~j!c̄~r 8!d2r 8, ~7.4!

where c̄(r ) is the stream function of averaged flow, andb
plays the role of inverse temperature. Averaging of the ki
matical relation

2Dc̄~ t,x!5v~ t,x!5E d„x2r ~ t,j!…v̊~j!d2j ~7.5!
s
is

-

e

-
r,

v-

-

closes the equation forc̄. One obtains@9#

2Dc̄~r !5E
V
v̊~j!

e2bv̊~j!c̄~r !

E
V
e2bv̊~j!c̄~r 8!d2r 8

d2j. ~7.6!

Derivation of the basic relation~7.4! becomes elementar
if one accepts the statistical independence of vortex posit
~7.3! and the equivalence of microcanonical and canon
distribution. The latter means that the microcanonical dis
bution of positionsr 1 ,...r N of the vorticesj1 ,...jN can be
substituted by the Gibbs distribution,

f ~r 1 ,...,r N ;j1 ,...,jN!5
1

Z
e2bH~r 1 ,...,r N ;j1 ,...,jN!,

Z5E e2bHd2Nr . ~7.7!

Of course, the equivalence takes place only in the lim
N→`.

To derive Eq.~7.4! from Eqs.~7.1!, ~7.3!, and ~7.7! we
note that canonical distribution maximizes the entropy c
sidered as a functional of probability density functions,

S52E f ~r 1 ,...,r N ;j1 ,...,jN!

3 ln f ~r 1 ,...,r N ;j1 ,...,jN!d2Nr . ~7.8!

The set of admissible probability density functions is e
tracted by the constraints

E f ~r 1 ,...,r N ;j1 ,...,jN!H~r 1 ,...,r N ;j1 ,...,jN!d2Nr 5Ē

E f ~r 1 ,...,r N ;j1 ,...,jN!d2Nr 51. ~7.9!

Now we modify the variational principle~7.8!,~7.9! ad-
mitting the additional constraint, the statistical independe
of vortex positions:

f ~r 1 ,...,r N ;j1 ,...,jN!5 f ~r 1 ,j1! f ~r 2 ,j2!••• f ~r N ,jN!.

~7.10!

Then the entropy functionalS is transformed to a functiona
of one-point probability density functions of the form

S52(
p
E

V
f ~r ,jp!ln f ~r ,jp!d2r . ~7.11!

Suppose that regionV is covered by a squared grid with ce
size« and wherejp are the nodes of the grid; the number
vortices is equal touVu/«21O(AuVu/«). Multiplying Eq.
~7.11! by «2 and assuming thatf (r ,jp) are the values of a
smooth functionf (r ,j) at the pointsjp , we obtain in the
left-hand side of Eq.~7.11! an integral sum that converge
for N→` to

1

N
S52

1

uVu EV
f ~r ,j!ln f ~r ,j!d2rd2j. ~7.12!
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The constraints~7.9! take the form

1

2 E
V
E

V
G~r ,r 8! f ~r ,j! f ~r 8,j8!v̊~j!v̊~j8!

3d2rd2r 8d2jd2jd2j85Ē, ~7.13!

E
V

f ~r ,j!d2r 51. ~7.14!

Maximization of entropy~7.12! with respect to functions
f (r ,j) constrained by Eqs.~7.13! and ~7.14! yields the for-
mula ~7.4!, whereb is the Lagrange multiplier for the con
straint ~7.13!.

This means of derivation~7.4! is quite straightforward.
The price paid is a number of unjustified hypotheses: sta
tical independence, equivalence of microcanonical and m
rocanonical distributions, and a possibility to change the
tropy functional~7.8! by the functional~7.12!. The feasibility
of such an approach is confirmed by the derivation of E
~7.4! from the ergodic hypothesis. In what follows we acce
this simple way of constructing the probability measu
leaving the justification for further study.

VIII. PROBABILITY MEASURE FOR 3D FLOWS

Conceptually, the derivation of probability measure f
3D flows is the same as for 2D ones. A technical compli
tion is that the points representing point vortices should
replaced by curves, vortex lines. Denote the ‘‘probabil
density function’’ of positionsg of the vortex linej by
f (g,j). The joint probability density function ofN vortex
lines is f (g1 ,j1 ;•••gN ,jN). We assume the statistical inde
pendence of positions of vortex lines:

f ~g1 ,j1 ;g2 ,j2 ;•••gN ,jN!

5 f ~g1 ,j1! f ~g2 ,j2!••• f ~gN ,jN!. ~8.1!

In the same way as in Sec. VI, this yields the expression
entropy,

S5const3E DgE f ~g,j!ln f ~g,j!d2j. ~8.2!

The integration in the space of vortex lines is denoted
*Dg. This integration should be understood as a limit
some finite dimensional truncation of the vortex line dyna
ics.

In accordance with Eq.~5.4!, averaged kinetic energy o
the flow is given by

E5
1

2 E G~g,g8! f ~g,j!v̊~j! f ~g8,j8!v̊~j8!

3d2jd2j8DgDg8. ~8.3!

The probability density function is normalized by the con
tion

E f ~g,j!Dg51. ~8.4!
s-
c-
-

.
t
,

r
-
e

r

y
f
-

Maximizing the functional~8.2! with respect tof (g,j) sub-
ject to the constraints~8.3! and ~8.4! we obtain

f ~g,j!5const3expF2bv̊~j!

3E G~g,g8! f ~g8,j8!v̊~j8!d2j8Dg8G .
~8.5!

Here b is Lagrange’s multiplier for the constraint~8.3!. In
accordance with Eq.~5.5! the expression in the exponent ca
be written as

E G~g,g8! f ~g8,j8!v̊~j8!d2j8dg8

5MF E Gi j „x~h!,r k~h8,j8!…
]xi~h!

]h

]r j~h8,j8!

]h8

3v̊~j8!dhdh8d2j8G ,
where x5x(h) is the parametric equation of the curveg
andM stands for mathematical expectation.

Using Eq.~4.14! the last expression can be put in the for

M
r 8~j8!

F E Gi j „x~h!,r 8~j8!…
]xi

]h

]r j~j8!

]h8
v̊a~j8!d3j8dhG

5E
g
c̄ idxi ,

wherec̄ i is the averaged stream function vector.
Finally,

f ~g,j!5const3e2bv̊~j!*gc̄ i dxi
. ~8.6!

Note that additional assumptions specifying integration
the space of the vortex lines should be made in order
fulfill Eq. ~8.6! with a mathematical sense. However, a c
tain observation can be made right away: comparing pr
ability measure~8.6! with the well-studied Wiener measure
which has ‘‘probability density function’’@19,20#

f ~g!5const3e21/2*g~dx/dh!2dh, ~8.7!

we see that a typical vortex line is less smooth then a typ
Wiener curve.

The assumption on statistical independence of the mo
of vortex lines puts some severe constraints on the topol
of the initial vorticity field. In particular, knotting of the
vortex lines is not allowed. The influence of topological i
variants of the vorticity field on the probability measure is
interesting open problem.

The topology of the vortex lines seems to be trivial f
effectively two-dimensional flows, like Couette’s and Po
seuille’s flows, and for pipe flows. Therefore, the assum
tions made in the derivation of Eq.~8.6! may be meaningful.
We consider how to deal with the measure~8.6! for these
two cases. Before proceeding to these topics a specifica
of the relations between the velocity and vorticity for cyli
drical regions is needed.
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IX. SOME KINEMATICAL RELATIONS
FOR CYLINDRICAL REGIONS

General relations of Sec. IV between vorticity, veloc
and stream functions can be considerably simplified for
lindrical regions.

Let region V be a cylinder: V5$x1,x2,x3:(x1,x2)
PV,0<x3< l %. The third coordinate plays a distinct rol
and we usually drop the index 3, in particular,x3[x,c3

[c,v3[v,v3[v. Greek indices run values 1,2 and corr
spond to projections on coordinatesx1,x2. The set of coor-
dinates x,xa is denoted by x; similarly, v[(va,v),v
[(va,v).

It is assumed that at the cylinder surface]V3@0,l # the
no-detachment-penetration condition holds:

vana50 at ]V3@0,l #. ~9.1!

At the cross sectionsx5@0,l # periodicity of velocity is
posed.

Vorticity is a divergence-free vector field:

]v

]x
1

]va

]xa 50. ~9.2!

Thusv component of vorticity is determined byva com-
ponents and the distribution ofv over the cross sectionx
50:

v~x,xa!5v0~xa!1
]

]xa E
0

x

vadx. ~9.3!

Velocity and vorticity are linked by the relations

eab]avb5v, eab~]bv2]xvb!5va. ~9.4!

It follows from Eqs.~9.4! and~9.1! that thev component of
velocity is determined byva components of vorticity:

2D3v5eab]avb ,
]v
]n

[nb]bv5vaeabnb,

v~0,xa!5v~ l ,xa!,
]v
]x

~0,xa!5
]v
]x

~0,xa!. ~9.5!

HereD3 is 3D Laplace operator.
To write down the solution of the boundary value pro

lem ~9.5! in terms of the Green’s function it is convenient
put Eq. ~9.5! in a weak form: for any smooth periodic inx
function f,

E
]V3@0,l #

v
]w

]n
d2x2E

V
vD3wd3x5E

V
eabva

]w

]xb d3x.

~9.6!

Equation~9.6! suggests a feasibility to consider the Gree
function H(x,x8) of the boundary-value problem,

D3H~x,x8!52d~x2x8!1
1

uVu
in V,
-

]H

]xa na50 at ]V3@0,l #,

H~0,xa!5H~ l ,xa!,
]H

]x
~0,xa!5

]H

]x
~ l ,xa!. ~9.7!

Puttingf5H in Eq. ~9.6! one obtains

v~x,xa!2
1

uVu EV
vd3x5E

V
eabva~x8!

]H~x8,x!

]x8b d3x8.

~9.8!

Other components of velocity can be found from the seco
equation~9.4!,

vb~x,xa!5vb~0,xa!1]bE
0

x

vdx2E
0

x

eabvadx. ~9.9!

Herev is assumed to be expressed in term ofva by means
of Eq. ~9.8!. The 2D vectorvb(0,xa) satisfies equations

eab]avb~0,xa!5v0~xa!,

]ava~0,xb!52
]v
]x

~0,xa!

52E
V

eabva~x8!
]2H~x8,x,xb!

]x8b]x U
x50

d3x8,

va~0,xb!na50 ~9.10!

The solution of Eqs.~9.10! can be written in terms of
Green’s functions of Dirichlet and Neuman problems f
cross sectionV.

The v component of vorticity is a periodic function ofx
as follows from the first equation~9.4!. Thus, the admissible
values ofva components obey the constraint

]

]xa E
0

l

vadx50, ~9.11!

which follows from Eq.~9.2!.
Note that periodicity conditionvb(0,xa)5vb( l ,xa) is sat-

isfied. Indeed,

]bE
0

l

vdx5E
0

l

dxE
V
eadva~x8!

]2H~x8,x,xb!

]x8d]xb

5E
V
eadva~x8!

]2h~x8d,xb!

]x8d]xb d2x8dx8,

~9.12!

where

h~xa,x8a!5E
0

l

H~xa,x;x8a,x8!dx8

is the solution of boundary-value problem~D2—2D Laplace
operator!,
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D2h52d~xa2x8a!1
1

uVu
,

]h

]n
50 at ]V.

~9.13!

and does not depend onx.
Since, due to Eq.~9.11!,

E
0

l

va~x8!dx85eab]bx,

wherex is some function ofxa,

E
V
easva~x8!

]2h~x8s,xb!

]x8s]xb d2x8dx8

5E
0

]x

]x8s

]2h~x1s,xb!

]x1s]xb d2x8

52
]

]xb E x~x8s!Dh~x8s,xb!d2x85
]x~xb!

]xb

5
]

]xb E
0

l

eabva~x,xb!dx. ~9.14!

Periodicity of va follows from Eqs. ~9.10!, ~9.12!, and
~9.14!.

X. PROBABILISTIC MEASURE
FOR CYLINDRICAL REGIONS

Consider the motion of ideal incompressible fluid in
cylindrical region. This motion is assumed to be periodic
the axial direction. An ideal fluid has two additional integra
of motion due to translational symmetry along the axis.

These integrals are

E
V

]r 3

]t
~j,t !d3j5const,

E
V
eabr a~j,t !

]r b

]ja ~j,t !v̊a~j!d3j5const. ~10.1!

Conservation of the second integral~10.1! can be derived
from the invariance of the functional~2.1! with respect to
shifts in the axis direction. Kinetic energy in Eq.~2.1! is
obviously invariant under such transformation. The fun
tional A is also invariant. Indeed,

A~r a,r 31c!2A~r a,r 3!5 1
3 cE

V
eabvavbd3x

5 1
3 cE

V
eabvaebg~]gv32]3ng!d3x

5 1
3 cE

V
~va]3va2va]av3!d3x.

The first term is zero due to periodicity of velocity. Th
second term can be transformed to

E va]av3d3x5E
0

l

dx3E
]V

vanads2E
V
v3]avad3x
-

and is also zero becausevana50 at ]V and v3]ava5
2v3]3v3. Therefore,

I ~r a,r 31c!5I ~r a,r 3!.

Thus,

dI 50 ~10.2!

for any dc. On the other hand,

dI 52 ddc
1

3 E eabr a
]r b

]ja v̊ad3j e
t0

t1

~10.3!

for any t0 ,t1 . Conservation of the second integral~10.1!
follows from Eqs.~10.2! and ~10.3!.

Additional integrals of motion appear if the cylinder i
circular, but we consider here only the general case assum
that even circular cylinders are circular only approximate
and there are small disturbances eliminating rotational sy
metry.

Without loss of generality we may use the referen
frame in which the total discharge of the flow is equal
zero, and also

E
V
r 3~ t,j!d3j50. ~10.4!

Condition ~10.4! eliminates the shifts in axial direction.
The second integral~10.1! should be taken into account in

maximization of entropy in the form of the constraint

E DgE
g
eabr adrb f ~g,j!v̊~j!d2j5const. ~10.5!

It is easy to check that the resulting measure is

f ~g,j!5const

3expF2v̊~j!S bE
g
c̄ idxi1lE

g
eabxadxbD G ,

~10.6!

wherel is the Lagrange multiplier for the constraint~10.5!.

XI. EFFECTIVELY 2D FLOWS

Consider the case when vortex lines are directed at av
age along the cylinder. This means that each vortex l
crosses the planesx5const@Fig. 1~a!#. We assume for sim-
plicity that the projections of each point of a vortex line o

FIG. 1. Typical vortex lines for~a! effectively two dimensional
flow ~b! pipe flow.
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the x axis is unique, andx can be chosen as a parame
along the vortex lines.

Let the average flow be two dimensional, i.e., the av
aged components of velocityv̄a are functions ofxa while
v̄350. In terms of the stream function vector this corr
sponds toc̄35c(xa), c̄a50.

A natural finite-dimensional model of the vortex lin
would be a set of points at which the vortex line crosses
planesx50, x5«, x52«,..., x5n«5 l . Denoting the pro-
jections of these points on the cross sectionx50 by r0 ,...,rn
we describe the vortex line by the sequencer1 ,...,rn ~r0
5rn due to periodicity!.

Let first the parameterl in Eq. ~10.6! be zero. Then prob-
ability density function of positionsr1 ,...,rN is

f ~r1 ,...,rn ,j!5const3e2v̊~j!b«(sc~rs!. ~11.1!

We normalize ‘‘coldness’’b assuming thatb« tends to some
constant for«→0. We keep the notationb for the limit con-
stant. Finally,

f ~r1 ,...,rn ,j!5const3e2v̊~j!b(sc~rs!. ~11.2!

Positions of the pointsr s are statistically independent an
have the probability function

f ~r ,j!5
1

Z
e2v̊~j!bc̄~r !, Z5E e2v̊~j!bc̄~r !d2r .

~11.3!

Let us find the equations for the averaged flow. First,
establish that the averaged transversal vorticityv̄a is zero.
Indeed, a natural finite-dimensional representation ofv̄a at
the planex5xs is

v̄a~xb,xs!5E d„xb2r b~xs ,j!…
dra~x,j!

dx
v̊~j!d2j

5
1

2« E d„xb2r b~xs ,j!…~r s11
a 2r s21

a !v̊~j!d2j.

Since r s21
a , r s

a , and r s11
a are statistically independen

r s21
a 5r s11

a , v̄a50.
In the same way the averaged axial component of vor

ity is obtained:

v̄~xa,xs!5E d„xa2r a~xs ,j!…v̊~j!d2j

5E d~xa2r a!
1

Z
e2v̊~j!bc̄~r !v̊d2rdj

5E v̊~j!
e2v̊~j!bc̄~r !

E e2v̊~j!bc̄~r 8!dr8

d2j.

Sincev̄52Dc̄, we arrive at the equation forc̄ @Eq. ~7.6!#.
If lÞ0 the situation is more complex because a natu

finite-dimensional model for Eq.~10.6! is
r

-

-

e

e

-

l

f ~r1 ,...,rn ,j!5const3expF2v̊~j!S b(
s

c̄s~r s!

1l(
s

eabr s
ar s11

b D G . ~11.4!

Positionsr s are no longer statistically independent.
Parameterl is determined by the condition

E eabr adrb5given. ~11.5!

Note that the averaged value~11.5! is equal to zero ifl
50:

E eabr adrb5( eabr s
a~r s11

b 2r s21
b !50,

since allr s are statistically independent forl50. If one as-
sumes that there is one-to-one correspondence betwee
constant~11.5! and parameterl, the zero value of the con
stant~11.5! correspond to zero value ofl. Thus, prescribing
the zero value of the constant~11.5! we get the measure
~11.3!.

XII. PIPE FLOW

Consider the flows with one nonzero averaged compon
of velocity v̄(x1,x2), v̄a50. For such flowsc̄50, c̄aÞ0.
Probability measure~10.6! takes the form

f ~g,j!5const3expF2v̊~j!S bE
Vg

v̄d2x12lE
Vg

d2xD G ,
~12.1!

whereVg is the two-dimensional region bounded by the pr
jection of vortex lineg on the pipe cross sectionV. Denoting
the sumv̄12l/b by ṽ,

ṽ5 v̄1
2l

b
, ~12.2!

we have

f ~g,j!5const3e2v̊~j!b*Vg
ṽd2x. ~12.3!

The probability depends only on projectionxa5r a(h) while
all positions of vortex line points along thex axis x5r (h)
are statistically independent and have equal probability.

Formula~12.3! suggests a natural way to define a finit
dimensional probability measure. Let us cover regionV by a
lattice with the cell centersr s , s51,...,n ~Fig. 2!. Each vor-
tex line projection onV is a closed path on the lattice. A
projections can be characterized by the set of pointsr s that
belong toVg . Doing that we identify all pathsg andg8 for
which the regionVg2Vg8 has zero area~Fig. 3!.

Each cell r s either belongs or does not belong toVg .
Therefore, there are 2n possible projections. They all ar
statistically independent. The probability thatr sPV is

const3e2bv̊~j! ṽ ~r s!«2
,
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where«25uVu/N. ‘‘Coldness’’ is normalized in such a wa
that b«2→const if «→0. Notationb is kept for the limit
constant. So,

f ~g,j!5const3e2bv̊~j!(s51
n ṽ ~r s!hs, ~12.4!

wherehs51 if r sPVg andhs50 otherwise.
The major difference from the case of effectively tw

dimensional flow is that, for a typical vortex line,r (h) is
periodic@Fig. 1~b!#. Therefore the averagedv component of
the vorticity is zero:

v̄~x!5E d~x2r !
dr

dh
v̊d2jdh

5E d„xa2r a~h!…d„x2r ~h!…
dr

dh
v̊d2jdh

52E d~xa2r a!
du~x2r !

dh
dhv̊d2j50.

FIG. 2. Vortex line projection.

FIG. 3. Examples of identical paths.
Here du(x)/dx5d(x), and statistical independence o
r a(h) and r (h) is used.

To find the equation forv̄ consider averaging of Eq.~9.8!.
We have~bear in mind that we use the frame with ze
discharge!

v̄5E eab
dra~h,j!

dh
v̊~j!

]H̄~r ,x!

]r b d2jdh. ~12.5!

Sincer (h) is statistically independent onr a, averaging with
respect tor (h) is reduced to integrationH over x:

v̄5
1

l E eab
dra~h,j!

dh
v̊~j!

]h~r ,x!

]r b d2jdh,

~12.6!

whereh is determined by Eq.~9.13!. The right-hand side of
Eq. ~12.6! can be written as

v̄5
1

l E d2jv̊~j! R
g
eabdra

]h~r ,x!

]r b

5
1

l E v̊~j!d2jE
Vg

~2Dh!d2r

5
1

l E v̊~j!d2jE
Vg

S d~xa2r a!2
1

uVu Dd2r .

The average value of the functional of the form

E
Vg

G~xa!d2x

with respect to measure~12.4! can be easily found:

E
V

h~x!G~x!d2x5(
s51

n

hsG~xs!«
25(

s51

n

G~xs!«
2h̄ i

5(
s51

n

G~xs!«
2

e2bv̊~j! ṽ ~xs!

11e2bv̊~j! ṽ ~xs!

5E
V

G~x!
e2bv̊~j! ṽ ~x!

11e2bv̊~j! ṽ ~x! d2x.

Finally,

v̄5
1

l E v̊~j!d2jS e2bv̊~j! ṽ ~x!

11e2bv̊~j! ṽ ~x!

2
1

uVu E e2bv̊~j! ṽ ~x!

11e2bv̊~j! ṽ ~x! d2xD . ~12.7!

In Eq. ~12.7! ṽ should be expressed in terms ofv̄ from Eq.
~12.2!. The condition of zero discharge determined para
eter l, while the prescribed value of kinetic energy dete
mines parameterb. Equation~12.7! is an integral equation
for averaged axial velocityv̄. The solution of this equation
will be considered elsewhere. One observation, however,
be made right away: it is not seen from the comparison of
equation for pipe flow~12.7! and the equation for effectively
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two-dimensional flow~7.6! that they are particular cases
some general equations. It might reflect the fact that there
no universal equations of turbulence except that these e
tions follow from the averaging with respect to an invaria
measure that might be universal. If this is the case, the a
aged equations should be developed for each class of
geometry.

APPENDIX A: VARIATION OF FUNCTIONAL „5.6…

Let position vectorr (t,j) get an infinitesimal variation
dr . Variations dr are assumed kinematically consistent
the boundary, i.e.,

dr ini50 at ]V. ~A1!

Variation of the first term in Eq.~5.6! is

dE
t0

t1
Adt5E

t0

t1E
V

1

3
ei jk@dr i ṙ jvk2 ṙ idr jvk2r idr j ṙ ,m

k vm

1r i ṙ j~dr kvm! ,m#d3j1F E
V

1

3
ei jkr idr jvkd3jG

t0

t1

5E
t0

t1E
V
ei jkdr i ṙ jvkd3j

1F E
V

1

3
ei jkr idr jvkd3jG

t0

t1

. ~A2!

For variation of kinetic energy~5.3! we have

dK5E
V
E

V
d]G̃i j @r ,r ~ t,j8!#

]r k U
r 5r ~ t,j!

dr k
]r i~ t,j!

]ja v̊a~j!

3
]r j~ t,j8!

]j8b v̊b~j8!1G̃i j @r ~ t,j!,r ~ t,j8!#

3
]dr i

]ja v̊a~j!
]r j~ t,j8!

]j8b v̊b~j8!ed3jd3j8.

Changing integration over Lagrangian coordinates to integ
tion over Eulerian coordinates we get

dK5E
V
E

V
d]G̃i j ~x,x8!

]xk dr k~ t,x!v i~ t,x!v j~ t,x8!

1G̃i j ~x,x8!dr ,k
i ~ t,x!vk~ t,x!v j~ t,x8!Gd3xd3x8.

~A3!

In accordance with Eq.~4.18! the first term in Eq.~A3! can
be written as
re
a-

t
r-
w

t

a-

E
V
E

V

]G̃i j ~x,x8!

]xk dr k~ t,x!v i~ t,x!v j~ t,x8!d3xd3x8

5E
V
E

V
E

V

]Rmi~ x̃,x!

]xk Rj
m~ x̃,x8!dr k~ t,x!v i~ t,x!

3v j~ t,x8!d3xd3x8d3x̃

5E
V
E

V

]Rmi~ x̃,x!

]xk vm~ t,x̃!dr k~ t,x!v i~ t,x!d3xd3x̃.

~A4!

By the same reasonings, the second term in Eq.~A3! can be
transformed to

E
V
E

V
G̃i j ~x,x8!dr i

,k~ t,x!vk~ t,x!v j~ t,x8!d3xd3x8

5E
V
E

V
E

V
Rmi~ x̃,x!Rj

m~ x̃,x8!dr i
,k~ t,x!vk~ t,x!

3v j~ t,x8!d3xd3x8d3x̃

5E
V
E

V
Rmi~ x̃,x!vm~ t,x̃!dr i

,k~ t,x!vk~ t,x!d3xd3x̃

52E E ]Rmi~ x̃,x!

]xk vm~ t,x̃!dr i~ t,x!vk~ t,x!d3xd3x̃.

~A5!

Combining~A3!–~A5! we get

dK5E
V
~dr kv i2dr ivk!

du i

]xk d3x, ~A6!

where

u i~ t,x!5E
V

Rmi~ x̃,x!vm~ t,x̃!d3x.

Denote the differenceu i2c i by m i . In accordance with Eq
~4.6!,

m i[u i2c i5E @Rmi~ x̃,x!2Rim~x,x̃!#vm~ t,x̃!d3x̃.

Identity ~4.11! yields

E
V

m i«
id3x50

for any divergence-free vector field« i .
Substitutingu i5c i1m i into Eq. ~A6!, we see that the

term containingm i vanishes, because, in accordance w
Eqs.~5.6! and ~4.8!,

E
V
~dr kv i2dr ivk!

]m i

]xk d3x

52E m i

]

]xk ~dr kv i2dr ivk!d3x,
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and vector (dr kv i2dr ivk) ,k is divergence free.
Finally

dK5E
V
~dr kv i2dr ivk!c i ,kd

3x52E
V
dr kv ic@ i ,k#d

3x

5E
V
dr kv ieik jv

jd3x. ~A7!

Here c@ i ,k#[1/2(c i ,k2ck,i) and we used the relationc@ i ,k#

51/2eik jv
j .

Assume that the positions of particles are prescribedt
5t0 ,t1 . Then dr i50 at t5t0 ,t1 and the last term in Eq
~A2! vanishes~in fact, to vanish this term, a weaker co
straints may be set!. Combining Eqs.~A2! and ~A7! we ar-
rive at the expression for variation of functionalI @Eq. ~5.7!#.

APPENDIX B: SYMMETRIES OF THE ACTION
FUNCTIONAL AND INTEGRALS OF THE MOTION

In this appendix the groups of symmetries of the act
functional are found. They cause the extra integrals of m
tion of vortex dynamics to exist. We determine the cor
sponding integrals of motion in the dynamics of the vort
lines. We begin our consideration with the discussion of
well-known fact that the conservation of the velocity circ
lations stems from the invariance of kinetic energy with
spect to the relabeling group of transformations.

1. Relabeling group

Consider the Hamilton variational principle: true motio
of an ideal incompressible fluid is a stationary point of t
action functional,

I „x~ t,j!…5E
t0

t1E
V

1

2
r

]xi~ t,j!

]t

]xi~ t,j!

]t
d3j, ~B1!

on the set of all functionsx(t,j) such that their initial and
final values are prescribed,

x~ t0 ,j!5x0~j!, x~ t1 ,j!5x1~j!, ~B2!

fluid does not detach from or penetrate through the wall,

x~ t,j!PV if jPV, ~B3!

and the motion is incompressible,

U]x

]jU51. ~B4!

In this section, we do not need to mark the vortex lines, t
here j denotes the set of all three Lagrangian coordina
Let us rename the particles:j→h(j), and, for a given mo-
tion,

x5x~ t,j!,

consider another motion,

x5x8~ t,j![x„t,h~j!…. ~B5!
n
-

-

e

-

s
s.

Condition~B3! is obviously satisfied. To satisfy Eq.~B4! we
set

U]h

]j U51. ~B6!

The new motion~B5! does not obey Eq.~B2!, but this is not
necessary for our purposes.

The action functional has the same values for both m
tions,x5x(t,j) andx5x8(t,j). Indeed,

I „x8~ t,j!…5E
t0

t1E
V

1

2
r

]x8 i~ t,j!

]t

]xi8~ t,j!

]t
d3j

5E
t0

t1E
V

1

2
r

]xi
„t,h~j!…

]t

]xi„t,h~j!…

]t
d3j

5E
t0

t1E
V

1

2
r

]xi~ t,h!

]t

]xi~ t,h!

]t U ]j

]hUd3h.

~B7!

Taking into account Eq.~B6! and changing the notation fo
the integration variables fromh to j we see that the integra
~B7! coincide with the integral~B1!. Therefore,

dI 5I „x8~ t,j!…2I „x~ t,j!…[0. ~B8!

Let relabeling be infinitesimal, i.e.,h5j1dj. Then

dxi5x8 i~ t,j!2xi~ t,j!5
]xi

]ja dja. ~B9!

The variation of functional~B1! is

dI 5E
t0

t1E
V

rv i

]dxi

]t
d3j5F E

V
rv idxid3jG

t0

t1

2E
t0

t1E
V
F ]

]t
rv i~ t,j!Gdxid3j. ~B10!

Assume that the motionx(t,j) obeys the Euler equations
Then the last integral in Eq.~B10! vanishes because

E
t0

t1E
V
F ]

]t
rv i~ t,j!Gdxid3j5E

t0

t1E
V
S 2

]p

]xi dxi Dd3x

52E
t0

t1E
]V

pdxinid
2x50.

~B11!

Here we used the Euler equations~2.1! and integrated by
parts taking into account that

]dxi

]xi 50,

due to Eq.~B4!, and that

dxini50,
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due to Eq.~B3! and the way in which the motionx8(t,j) was
defined. Note that Eqs.~B11! and ~B8! hold for any t0 ,t1 .
Thus, in accordance with~B8!, ~B10!, and ~B11!, for any
t0 ,t1 ,

E
V

rv idxid3jU
t5t0

5E
V

rv idxid3jU
t5t1

or

E
V

rv i

]xi

]ja djad3jU
t5t0

5E
V

rv i

]xi

]ja djad3jU
t5t1

.

~B12!

Functionsdja are not arbitrary. Due to Eq.~B6! they
obey the equation

]dja

]ja 50.

This equation is satisfied ifdja is a vector field concentrate
at any closed fluid lineg and having a constant projection o
this line ~the situation is similar to that for vorticity in Sec
V!. Denoting a parameter along the line byh one obtains
from Eq. ~B12!

E
g
rv i

]xi

]h
dhU

t5t0

5E
g
rv i

]xi

]h
dhU

t5t1

5E
g
rv idxi ,

i.e., the conservation of the velocity circulation along a
closed fluid contour.

2. Isovorticity group in 2D

The variational principles for the functionals~3.10! and
~5.6! differ from the Hamilton variational principle by elimi
nation of many symmetries and, consequently, many in
grals of motion~the velocity circulations!. Nevertheless, cer
tain symmetries~and integrals of motion! still remain. For
example, 2D dynamical equations~3.9! yield the conserva-
tion of the particle volume~at each material pointj,
u]x/]ju5const!. We arrive at the following questions: Wha
is the underlying group of symmetry for these integrals
2D? What are the symmetry group and the correspond
integrals in 3D? Here we show that, for the two-dimensio
case, this is the group relabeling the particles with the sa
vorticity. We call it the isovorticity group. More precisely
consider the action functional for two-dimensional flows:

I ~r !5E
t0

t1
dtF E

V
y~ t,j!

]x~ t,j!

]t
v̊~j!d2j2KG ,

K5
1

2 E
V
E

V
G„r ~ t,j!,r ~ t,j8!…v̊~j!v̊~j8!d2jd2j8.

~B13!

Let us show that the action functional has the same value
two motionsx5r (t,j) andx5r 8(t,j) if

r 8~ t,j!5r „t,h~j!…,
-

g
l
e

or

and the relabelingj→h(j) conserves the vorticity:

v̊~j!5v̊„h~j!…U]h

]j U. ~B14!

Equation~B14! can be written also in the form

v̊~j!d2j5v̊~h!d2h,

emphasizing the vorticity conservation as a measure. Inc
pressibility of the motion follows from this symmetry group
Indeed, the kinetic energy is an invariant under such tra
formation:

K„r 8~ t,j!…5
1

2 E
V
E

V
G„r 8~ t,j!,r 8~ t,j̃ !…v̊~j!v̊~ j̃ !d2jd2j̃

5
1

2 E
V
E

V
G~r „t,h~j!…,r „t,h~j̃ !…!v̊~j!v̊~ j̃ !

3d2jd2j̃

5
1

2 E
V
E

V
G„r ~ t,h!,r ~ t,h̃ !…v̊„j~h!…v̊„j~h̃ !…

3U ]j

]hUU ]j

]h̃Ud2hd2h̃

5
1

2 E
V
E

V
G„r ~ t,h!,r ~ t,h̃ !…v̊~v!v̊~ h̃ !d2hd2h̃

5K„r ~ t,j!….

Here we used the fact that Eq.~B14! can be written also as

v̊„j~h!…U ]j

]hU5v̊~h!.

The first integral in Eq.~B13! is also the invariant:

E
V

y8~ t,j!
]x8~ t,j!

]t
v̊~j!d2j

5E
V

y„t,h~j!…
]x„t,h~j!…

]t
v̊~j!d2j

5E
V

y~ t,h!
]x~ t,h!

]t
v̊„j~h!…U ]j

]hUd2h

5E
V

y~ t,h!
]x~ t,h!

]t
v̊~h!d2h.

In the same way as for the Hamilton variational principle w
obtain that

E
V

y~ t,j!dx~ t,j!v̊~j!d2j

5E
V

y~ t,j!
]x~ t,j!

]jm djmv̊~j!d2j5const.

~B15!
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The functionsdjm in Eq. ~B15! obey the constraint that fol
lows from Eq.~B14!,

v̊~j!5v̊~j1dj!U]~j1dj!

]j U
5S v̊~j!1

]v̊

]jm djmD S 11
]djm

djm D .

Keeping only the leading terms we obtain

]v̊djm

]jm 50.

Thus,

v̊djm5emn
]x~j!

]jn , ~B16!

wherex is an arbitrary function. The functionx should be
equal to zero at the boundary of simply connected region
v̊Þ0 at the boundary~that is assumed for simplicity!.

Plugging Eq.~B16! into Eq. ~B15! and integrating by
parts we obtain

E
V
emn

]y~ t,j!

]jm

]x~ t,j!

]jn x~j!d2j5const.

Since x~j! is an arbitrary function,u]x/]ju5const at each
particle, as was claimed.

3. Isovorticity group in 3D

The symmetry group of the functional~5.6! is a relabeling
group that conserves vorticity in the following sense:

v̊a~j!Ag̊~j!
]hb~j!

]ja 5v̊b
„h~j!…Ag̊„h~j!…U]h

]j U.
This can be checked by inspection. For infinitesimal tra
formation, the admissible variationsdja5ha2ja obey the
equation

]

]ja dAg̊~v̊adjb2v̊bdja!e50.

The general solution of this equation is

v̊adjb2v̊bdja5
1

Ag̊
eabc

]x~j!

]jc . ~B17!

Equation~B17! can be resolved with respect to]x/]jc:

]x

]jc 5Ag̊eabcv̊
adjb. ~B18!

If dja is proportional tov̊a, i.e., one relabels the particle
on the same vortex lines, then]x/]jc[0. We consider the
symmetries with respect to the relabeling of the neighbor
vortex lines, i.e.,djaÞlv̊a at all points.

Both vectorsv̊a and dja are tangent to the boundary
Projecting Eq.~B18! on the tangent directions to the boun
if

-

g

ary we obtain thatx is constant on the boundary, and, wit
out loss of generality, can be set equal to zero. It also follo
from Eq. ~B18! that vectors]x/]jc and v̊c are orthogonal:

v̊c
]x

]jc 50. ~B19!

In the same way as in the previous two cases, from the
variance of the action functional we obtain:

E ei jkxi~ t,j!dxj~ t,j!
]xk~ t,j!

]ja v̊a~j!Ag̊d3j5const.

Here

dxj5
]xj

]jb djb.

Hence,

E ei jkxi
]xj

]ja

]xk

]jb djbv̊aAg̊d3j

5E ei jkxi
]xj

]ja

]xk

]jb
1
2 ~v̊adjb2v̊bdja!Ag̊d3j

5E ei jkxi
]xj

]ja

]xk

]jb eabc
]x

]jc d3j.

Integrating by parts, we obtain the following expression
this integral:

2E ei jk

]xi

]jc

]xj

]ja

]xk

]jb eabcx~j!d3j523!E U]x

]jUx~j!d3j.

In the vortex line coordinate systemx is constant along the
vortex lines. Functionx is arbitrary as a function of the vor
tex line. Thus, for for each vortex line, the integral

E U]x

]jUdh5const ~B20!

remains unchanged in the course of motion.
The existence of this invariant of motion can be deriv

directly from Eq.~5.10!. Indeed, differentiating this equatio
with respect toxi and taking into account that, due to E
~5.10!, ]Vi /]xi50, we obtain

] ṙ i

]xi 5
]~lxa

i v̊a!

]xi 5
]~lv̊a!

]xi

]xi

]ja 1lv̊a
]xa

i

]xi 5
]lv̊a

]ja

1lv̊a
]2xi

]ja]jb

]jb

]xi .

Since

]jb

]xi 5
1

u]x/]ju
]u]x/]ju

]~]xi /]jb!
,

we have

]2xi

]ja]jb

]jb

]xi 5
]2xi

]ja]jb

1

u]x/]ju
]u]x/]ju

]~]xi /]jb!
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5
1

u]x/]ju
]u]x/]ju

]ja .

So,

] ṙ i

]xi 5
]~lv̊a!

]ja 1lv̊a
1

u]x/]ju
]u]x/]ju

]ja

5
1

u]x/]ju
]

]ja S lv̊aU]x

]jU D . ~B21!

On the other hand,

]

]tU
j5const

U]x

]jU5 ]u]x/]ju
]xa

i

]

]t

]xi

]ja 5U]x

]jU ]ja

]xi

] ṙ i

]ja 5U]x

]jU ] ṙ i

]xi .

~B22!

Combining Eqs.~B21! and ~B22!, we find

]

]tU
j5const

U]x

]jU5 ]

]ja S lv̊aU]x

]jU D . ~B23!

Equation~B23! can be also written as

]

]tU
j5const

U]x

]jU5Ag̊v̊a
]

]ja S l
u]x/]ju

Ag̊
D . ~B24!

Here we used Eq.~5.1!. In the vortex line coordinate system
Eq. ~B24! takes the form

]

]tU
j5const

U]x

]jU5v̊
]

]h S l
u]x/]ju

Ag̊
D . ~B25!

The vortex intensityv̊ does not depend onh. Integrating Eq.
~B25! over a closed vorticity line we obtain the integral
motion,

]

]t E U]x

]jU]h50.

The invariance of the action functional with respect
relabeling the particles on the same vortex line produce
‘‘degeneracy’’ of Eq.~5.10!: contracting of~5.10! with the
vorticity vector gives an identity.

The integrals~B20! mean a kind of ‘‘two-dimensiona
incompressibility’’ for the vortex line dynamics. These int
grals do not constrain the motion of a finite set of vort
lines, and, thus, does not affect the probability measure~1.1!.
a

APPENDIX C: VISCOSITY AND INTEGRALS
OF MOTION

Successful prediction of turbulent velocity profiles
Couette and Poiseuille flows by statistical mechanics of po
vortices @10# raises two questions:~i! Why can essentially
three-dimensional dynamics be described by a theory
point vortices that is two-dimensional?~ii ! Why does the
theory of ideal fluid work for flows bounded by the wal
while it is well known that viscosity contributes essentia
in fluid dynamics near the walls? The answer to the fi
question is given by the consideration in Sec. XI: point vo
tices can be considered as ‘‘averaged images’’ of curvilin
three-dimensional vortex lines, and the laws of statistical m
chanics of point vortices stay valid for these ‘‘averaged i
ages.’’ In this appendix the second question is discussed

Consider, for definiteness, the Couette flow of visco
incompressible fluid between two parallel walls. Walls mo
in opposite directions with velocitiesu and 2u. The wall
velocity is assumed to be large, so some steady turbu
regime is developed. One may think that in phase space
phase trajectory moves along the attractor of viscous flu
Experiments show that fluctuations of total energy of t
flow are small, of order percent. This means that the attra
lies in a small vicinity of the surface of constant energy.
seems natural to try to approximate the motion on the att
tor by the motion of an ideal fluid flow over the energ
surface. The motion of ideal fluid is not ergodic on the e
ergy surface: each trajectory belongs to a sheet on en
surface extracted by the values of initial vorticity. Assumi
that motion on the sheet is ergodic, one can try to appro
mate the invariant measure of the attractor by the invar
measure of some sheet. To determine a sheet correspon
to the attractor one has to give a recipe to establish the va
of initial vorticity and energy for this sheet. A way to do th
has been proposed in Ref.@10#. Let a snapshot of some tur
bulent vorticity field be made. Consider the dynamics of
ideal fluid with the initial vorticity field obtained from the
snapshot. The question is: Will the trajectory of ideal fluid
statistically close to the trajectory of a viscous fluid? Or,
other words: If at some instant viscosity is set equal to ze
will the motion of an ideal fluid and viscous fluid be stati
tically close? At first glance, the answer is no because id
fluid motion does not satisfy no-slip boundary condition
Fortunately enough, however, this does not seem to be a
obstacle: integrals of motion help to maintain no-slip boun
ary conditions in the average. For example, for Couett
flow total vorticity *v dxdy is conserved. The total vorticity
can be written in the form

E v dxdy52E
0

l

u1dx1E
0

l

u2dx, ~C1!

where they coordinate is orthogonal to the walls,u1 andu2

are the values of thex component of velocity at the walls
and the periodicity condition is imposed in thex direction.
Therefore, conservation of vorticity makes the flow of ide
fluid to keep the initial difference between wall velocities
average.
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For Poiseuille’s flow the role similar to total vorticit
~C1! is played by the integral of motion

E yv dxdy. ~C2!

This might be an explanation of why the statistical m
chanics of ideal fluid gives the experimentally observed
s.
-
-

locity profiles for Couette’s and Poiseuille’s flows. If th
wall geometry is more complex the contribution of viscos
in the averaged equations may be important.
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